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ABSTRACT
We consider the problem of efficient MAC design for long-distance
WiFi-based mesh networks. In such networks it is common to see
long propagation delays, the use of directional antennas, and the
presence of inter-link interference. Prior work has shown that these
characteristics make traditional CSMA-based MACs a poor choice
for long-distance mesh networks, prompting several recentresearch
efforts exploring the use of TDMA-based approaches to mediaac-
cess. In this paper we first identify, and then address, several short-
comings of current TDMA-based proposals, which exhibit inef-
ficienct throughput and delay charactersistics as they use fixed-
length transmission slots that cannot adapt to dynamic variations
in traffic load. We show that throughput achieved by existingsolu-
tions falls far short of the optimal achievable network throughput.
Current TDMA-based solutions also only apply to bipartitienet-
work topologies due to interference scheduling contraints.

In this paper, we present JazzyMac, a simple, practical and effi-
cient MAC protocol that addresses the above limitations. JazzyMac
achieves efficiency by enabling variable-length link transmissions
slots; each node can adapt the length of their transmission slots in
accordance with changing traffic demands. JazzyMac is practical
as it can be applied to arbitrary network topologies, and each node
can use purely local information for slot adaptation. Finally, the use
of dynamic slot lengths allows JazzyMac to achieve better tradeoffs
between throughput and delay.

We evaluate JazzyMac using detailed simulation over a range
of traffic patterns and realistic topologies. Our results show that
JazzyMac improves throughput inall considered scenarios. This
improvement is often substantial (e.g.,in 50% of our scenarios,
throughput improves by over 40%) and is particularly pronounced
for the common case of asymmetric traffic (e.g.,leading to almost
100% improvements). Furthermore, JazzyMac can achieve much
better average delay for the same throughput.
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1. INTRODUCTION
Multi-hop WiFi long-distance networks (WiLD) networks have

become increasingly popular in the last few years, providing cost-
efficient connectivity to sparsely populated areas and rural regions
in developing and industrialized countries alike. Exampledeploy-
ments include the Digital Gangetic Plains project [19], theAirJaldi
and Aravind networks [23] and the Akshaya network [24]. These
networks serve thousands of users, providing videoconferencing
and VoIP services in addition to basic Internet access.

Due to the presence of long-distance links and their use of direc-
tional antennas, WiLD networks present unique challenges relative
to traditional short-range mesh networks [3]. Specifically, these net-
works suffer from long propagation delays and an increased like-
lihood of inter-packet collisions. In addition, deployments where
only a small number of non-overlapping wireless channels are
available also suffer from inter-link interference. Priorwork has
shown that these challenges make traditional MACs based on car-
rier sensing, a poor fit for WiLD networks [21]. To address these
challenges, several TDMA-based MAC solutions such as 2P [19]
and WiLDNet [16] have been developed and are currently used in
practical deployments. This paper identifies and addressescertain
key performance limitations in 2P and WiLDNet. These limitations
arise primarily because these solutions rely on a TDMA schedule
with fixed-length slots and hence cannot adapt to dynamic traffic
variations.

In this paper, we first gauge the potential for improved perfor-
mance that might result from a MAC solution that takes advan-
tage of observed traffic conditions. For this, we compute theopti-
mal throughput achievable in WiLD networks assuming complete
knowledge of the network traffic workload (our computation here



extends prior work [11, 14]). Our results reveal that current static
approaches leave much room for improvement. Spurred on by this
finding, we then design JazzyMac, a simple, practical and efficient
MAC protocol for WiLD networks. The key innovation in Jazzy-
Mac is dynamic slot adaptation. Using JazzyMac, nodes adaptthe
length of their transmission slots to changing traffic conditions.
JazzyMac’s dynamic slot adaptation (compared to the fixed-length
slots of prior work) enables more efficient use of network capacity
by adapting to traffic and by allowing more parallel communication
among non-interfering links. Dynamic slot sizes also enable control
over the bandwidth-delay tradeoff. JazzyMac is simple and practi-
cal. The protocol is fully distributed allowing each node toadapt its
transmission slot size using purely local state and locally-observed
traffic information. We also show that JazzyMac’s distributed pro-
tocol is provably deadlock free.

In summary, JazzyMac offers three key advantages relative to
prior work:

1. Performance: JazzyMac achieves superior throughput (with up
to 100% improvement) over 2P and WiLDNet acrossall network
sizes, topologies, and traffic workloads. Moreover, this improve-
ment increases dramatically in the case of asymmetric traffic, a
commonly-occurring workload in rural Internet access.

2. Controlled throughput-vs-delay tradeoff: JazzyMac offers
network operators flexibility in navigating the throughput-vs-delay
tradeoff achieved by the network. This allows JazzyMac to better
support applications such as Internet telephony that favorlow de-
lays over higher throughput. Moreover, compared to existing pro-
tocols, we show that JazzyMac achieves consistently lower latency
even when achieving higher throughputs.

3. Support for topologies beyond bipartite graphs: When using
only a single channel, current solutions require that the topology
over which they operate be bipartite; for non-bipartite topologies
the solutions are applied only to a bipartite subgraph of theover-
all topology graph. JazzyMac eliminates this constrainingrequire-
ment and achieves better performance (and fault tolerance)using
the complete graph rather than just a bipartite subgraph. Eliminat-
ing this requirement is important because it allows networkdeploy-
ments to grow at will, without any topology-related constraints (be-
yond the usual line-of-sight).

The remainder of this paper is organized as follows: we startin
Section 2 with an overview of long-distance muti-hop wireless net-
works, then examine several opportunities for improvement(Sec-
tion 3). We describe the design of JazzyMac in Section 4 and eval-
uate its performance in Section 5. We discuss related work inSec-
tion 6 and finally conclude in Section 7.

2. BACKGROUND
WiLD networks are multi-hop wireless networks, featuring long

point-to-point wireless links that can range from tens to hun-
dreds of kilometers. Some real-life deployments of WiLD net-
works include the Akshaya network [24], the Digital Gangetic
Plains project [2], the CRCnet project [6], and our own project,
the Aravind network [23]. Recently, we have also successfully de-
ployed several links exceeding 100km, including a 382km link
in Venezuela [23].

In these networks, wireless nodes are equipped with multiple ra-
dios, co-located on the same tower. To achieve long range, WiLD
deployments use high-power 802.11 radios (400mW), and eachra-
dio is connected to a directional antenna, with gains as highas
30dBi. These radios can operate on the same wireless channel,
or on different (non-overlapping) channels. Although operation on
different channels avoids inter-radio interference, there are several
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Figure 1: SynOp scenarios for interference

practical constraints that may require the operation of co-located ra-
dios on the same channel. This can happen due to country-specific
regulatory restrictions [22], high spectrum costs, or the limited
number of available channels. For example, 802.11b has only3
non-overlapping channels, which forces nodes with many radios
to reuse some of the channels.

We therefore focus our study on single-channel operation. Our
results however still apply when multiple non-overlappingchan-
nels are available. In such cases, the network can be partitioned
into multiple independent components, each operating on a differ-
ent channel; our solution then applies to finding how to schedule
these sub-components. In this respect, our work is orthogonal to
that by Ramanet al. [17], exploring optimal solutions to parti-
tioning the network into single-channel subgraphs, given multiple
available channels.

2.1 UsingSynOpto avoid interference
Long-distance links with high-gain directional antennas inter-

fere with each other in a very specific manner. More precisely,
as first observed by Ramanet al. [18], and reiterated in [19, 16],
co-located radios (same physical location) operating on the same
wireless channel interfere with each other if one of them transmits
while the other receives. However, two adjacent directional links
that either transmit simultaneously (SynTx), or receive simultane-
ously (SynRx), will be largelyinterference-free– a mode of opera-
tion termed as Simultaneous Synchronized Operation (SynOp).

We briefly explain the reason for this behavior. Consider thead-
jacent directional point-to-point links depicted in Figure 1, sepa-
rated by an angleα. Now consider the following three potential
interference scenarios:
Mix-Tx-Rx: In this scenario, depicted in Figure 1(a),T2’s trans-
missions interfere withR1’s reception, due to the physical prox-
imity between the radios and the presence of antenna side-lobes.
Therefore, operating the links in this mode is not feasible.
SynRx: During simultaneous receive, shown in Figure 1(b),T2’s
transmissions are seen as interference atR1, andT1’s transmis-
sions are seen as interference atR2. For the interfering signal to
be ignored, the difference between useful signal and interference
must be larger than a certain thresholdThisolation, which de-
pends on modulation and data-rate;e.g.,with 802.11b at 11Mbps,
Thisolation ≈ 10dB [21, 18]. Fortunately, this isolation can usu-
ally be ensured through the difference in gain levels provided by
the directional antennas, if the links are separated by a sufficiently
large angle. If we denote the difference between the antennagain of
the main lobe and the gain at an angleα away from the main lobe
by Salpha (also called the rejection level at angleα), then adjacent
links are interference free under the following condition [18]:

|PR1 − PR2| < Sα − Thisolation (1)

wherePR1 and PR2 are the receive power levels atR1 and R2

respectively.
For example, if links use typical24dBi grid antennas [10] (also

used in our deployments) in horizontal polarization, an angular sep-
aration of more than10◦ (half the width of the antenna main lobe)



translates into an isolation of at least25dB (sometimes larger, not
monotonically increasing with the separation angle). Thismeans
that 802.11b links receiving simultaneously are interference-free if
|PR1 −PR2| < 15dB. This can be easily satisfied by a large range
of values (e.g.,PR1 = PR2), and even if the path loss of the two
links is very different, the condition can be satisfied by adjusting
the radio transmit power accordingly (by reducing the TX power
on the stronger link).
SynTx: With simultaneous transmissions, as in Figure 1(c), inter-
ference may occur at nodesB and C, but not at nodeA. Once
again,R1 may see interference fromT2, andR2 from T1. Given the
symmetry of the two links, ensuring non-interference during SynTx
can be done by enforcing a similar condition to that in equation 1.

We note that simultaneous transmission is infeasible usinga
carrier-sensing MAC, such as 802.11, since radios can hear each
others transmission, causing one of the radios to backoff. However
this is not an issue with MACs such as 2P, WildNet and this paper’s
JazzyMac since they do not rely on carrier sensing.

In summary, simultaneous synchronized operation (SynOp) can
allow multiple adjacent WiLD links to simultaneously use the same
wireless channelprovidedthe links are separated by a sufficiently
large angleα and the radio transmit powers are chosen to satisfy the
constraint from equation 1. Given the gain pattern of typical grid
directional antennas [10], an angular separationα larger than30◦

provides generous isolation between adjacent links; this has also
been demonstrated experimentally [18, 19] and validated inour de-
ployments [16, 23]. This separation limits the connectivity degree
to at most 12 adjacent links on the same channel, a number higher
than that reported by any existing deployments. Moreover, having
adjacent links with an angular separation smaller than the threshold
is also possible through the use of cross-polarization in which the
antennas of one link use vertical polarization, and the antennas of
the other link use horizontal polarization. For the antennas in our
network deployments, this adds an extra26dB isolation [10]. We
therefore assume that synchronized simultaneous operation is fea-
sible between any two adjacent links, and use this assumption for
the remainder of this paper.

2.2 MAC protocols for WiLD links
CSMA-based MAC protocols have been shown to perform

poorly in networks with long distance links [19, 21], leading to a
preference for TDMA-based MAC solutions. 2P [19] was the first
to propose a TDMA-based approach for WiLD networks; WiLD-
Net [16] extended the 2P approach with techniques to deal with
packet loss and to improve end-to-end performance in multi-hop
long-distance networks.

In these MACs, long-distance links alternate betweentransmit
andreceiveslots of fixed lengths. Inter-link interference is avoided
by eliminating the situation in which a node transmits on onelink
while receiving on another. Therefore, wireless nodes can either
send on some of their links, or receive on some of their links,but not
both. These constraints can be efficiently met in bipartite topolo-
gies, as they allow nodes to use all of their links simultaneously
and alternate as a group between send mode and receive mode. 2P
and WiLDNet are thus designed to work in bipartite topologies.

Figure 2(a) shows an example of such a bipartite network. Us-
ing 2P or WiLDNet, all nodes in partitionA first transmit on all of
their links (for a time slot of sizetA→B). Following this, all nodes
in partitionB transmit on all their links (for a time slot oftB→A).
The ratio between these slot sizes regulates the bandwidth alloca-
tion for every network link between the two partitions. In practice,
tA→B andtB→A are almost always set to be equal since this maxi-
mizes throughput for traffic paths spanning more than two hops [17,

(a) FT operation (b) Fork topology

Figure 2: Example topologies

19]. Given the significant similarities between 2P and WiLDNet,
we henceforth refer to both collectively as Fixed TDMA (FT).

3. OPPORTUNITIES FOR IMPROVE-
MENT

The 2P and WiLDNet solutions described in the previous section
represent important theoretical and practical advances. They suc-
cessfully cope with the problems due to long propagation delays
and inter-link interference and have been successfully deployed
in numerous networks [4, 23], serving many thousands of users.
Nonetheless, we believe there is significant, as-yet untapped, po-
tential to further improve network performance; specifically, to in-
crease network throughput and reduce latency. Additionally, we be-
lieve there is room to improve spectrum usage by making better use
of a single channel. In this section we explore these opportunities
qualitatively and then, in the following section, quantifythe poten-
tial for improved network utilization by comparing the throughputs
achieved by current solutions to upper bounds computed by optimal
offline algorithms.

3.1 Improving Throughput
We discuss two important avenues that can significantly improve

the throughput achieved in WiLD networks.

1) Adapting to Traffic Demand: Current MAC solutions for
WiLD networks feature a static TDMA slot allocation. This ap-
proach is simple, robust, and easy to deploy. However we conjec-
ture that higher throughputs could be achieved by having nodes
adapt their slot sizes by using current traffic information.The fol-
lowing examples illustrate this intuition:

Example 1: Single link: Consider the simplest case of a network
with a single link between nodesA andB and assume that the traf-
fic demand only exists fromA to B. In this scenario, the highest
throughput would be achieved by configuring the link to transmit
from A to B for (almost) the entire time. This can be achieved by
allocating large transmit slots in the directionA → B, and very
short transmit slots in the reverse direction. If subsequently the di-
rection of traffic flow is reversed, then the optimal slot allocation
would correspondingly change, with longer slots fromB to A. If
we were to use such an adaptive approach, the unidirectionaltraffic
could always be served at close to the full link capacity. Unfor-
tunately, approaches with fixed slot sizes cannot deliver similarly
high throughputs. Instead, in these approaches, the link isalways
scheduled to transmit forx% of the time in directionA → B and
1− x% in the reverse direction, with a typical setting ofx = 50%.

Example 2: Afork topology: Figure 2(b) illustrates yet another ex-
ample. In this scenario, we have a sink nodeS, and several source
nodesA,B,C, andD connected to the sink through relay nodeR.
Let us assume all links have the same datarate, and analyze the op-
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timal slot size allocation for relayR. If only one of the sources
(sayA) sends traffic to the sink, the slot allocation that maximizes
throughput is the one in which nodeR has equally sized transmit
and receive slots. In this case,R receives data for 50% of the time,
and relays this data for the remainder 50% of the time. Now assume
that we have 2 sources sending toS. In this case, the bandwidth-
optimal solution would be to haveR receive for1/3 of the time
(from both senders), and then relay this data toS in the remaining
2/3 of the time. Thus, R would have a transmit slot twice as long
as the receive slot. Similarly, if all four sources are sending traffic,
the best scenario would be the one in which the transmit slot at R
is 4 times longer than its receive slot.

In each of the previous examples, a simple strategy to take advan-
tage of local traffic information is to monitor the volume of traffic
on outgoing links and then adapt the size of TDMA transmit slots
to be proportional to the volume of traffic to be transmitted.This is
the fundamental intuition behind JazzyMac.

2) Allowing neighboring transmissions that overlap: Current
MAC protocols such as 2P and WiLDNet require that a node main-
tain all of its links in transmit mode for the same (fixed) timedura-
tion. However, there are several situations where this can be need-
lessly inefficient. For example, consider the topology presented in
Figure 3, in which traffic flows are represented by arrows. In this
topology, since nodes A and B are neighbors, they can never si-
multaneously operate in transmit mode (as per current protocols).
However, it is possible that the traffic demand is such that A only
needs a portion of its transmit slot to B (from say,t = 0 to t = 6).
In this case, we can allow B to start transmitting to a third node (D)
at an earlier time (t = 6) rather than having to wait until the end
of A’s transmission slot (t = 20). This means that, for a portion
of their transmission slots, both A and B can transmit simultane-
ously while still respecting all the invariants required toavoid in-
terference. Suchneighboring-but-independenttransmissions have
the potential to further increase network channel utilization and our
JazzyMac protocol is designed to exploit these opportunities.

3.2 Improving the bandwidth-delay tradeoff
Besides network throughput, another issue of particular inter-

est in long-distance networks is the per-packet delay. Although a
large fraction of the popular applications over WiLD networks are
delay-sensitive such as telemedicine [23] and VoIP [24], existing
solutions introduce significant per-hop delays.

One of the main reasons for larger delays is the TDMA approach
adopted by current protocols, and the fact that practical constraints
prevent TDMA slot sizes from being very small. This happens be-
cause switching between asending slotand areceiving slotcannot
be done instantaneously; it requires a non-zeroguard timein which
packets are neither transmitted nor received [16].

A lower bound for the size of this guard time is the round-trip
propagation delay, which is significant in long-distance networks.
For example, a 75km link has a round-trip delay of 0.5ms. Also,
in order to maintain synchronization in the network, the size of the
guard time is constrained by the round-trip delay of thelongestlink
in the network [19].

Besides propagation delay, existing implementations feature ad-
ditional constraints that make this guard time much larger in prac-
tice. This is especially true of implementations on top of WiFi
hardware, because the TDMA mechanisms are not supported in
the PHY layer (and firmware), but implemented either in the WiFi
driver or above it. This introduces additional (sometimes variable)
delays between the time a packet is sent from the driver and the
actual time that the packet is sent over the air. Because of these
inefficiencies, the guard time in WiLDNet is 3ms.

Having a large slot guard timetswitch limits the minimum slot
size. This in turn affects the average per-hop delay, which is propor-
tional to the slot time. For example, the average delay when very
lightly utilized is(tswitch + tslot)

2/2(2tslot + tswitch) ≈ tslot/4,
while the maximum per-hop delay at close to saturation utilization
is≈ 2tslot. Figure 4 plots the bandwidth as a function of slot time,
assuming guard timestswitch of 0.5ms, 1ms and 3ms.

Since existing approaches use fixed slots, the bandwidth vs.de-
lay tradeoff is fixed, usually to a value that favors bandwidth while
sacrificing delay (e.g.,a 10ms slot). In small deployments this is
acceptable, but with larger-scale networks the average hopcount
increases, the end-to-end delay penalty becomes prohibitive for in-
teractive applications.

We believe that dynamic slot adaptation can alleviate this prob-
lem. This would allow for the bandwidth-delay tradeoff to bene-
gotiated differently for different links, taking into account traffic
demand. Links seeing low utilizations could utilize small TDMA
slots and deliver low per-hop delay, since maximum link bandwidth
would not be necessary to serve the traffic demand. Conversely, for
highly utilized links the tradeoff could be shifted towardshigher
bandwidth, by using larger slots (e.g.,20ms). This approach would
allow the network to achieve the best of both worlds: small average
delays and maximum bandwidth efficiency when required.

3.3 Single-channel operation on arbitrary
topologies

Sending simultaneously and receiving simultaneously on all of a
node’s links avoids link interference, is very simple to operate, and
easy to implement. It is also a very efficient way to operate ifthe
network topology happens to be bipartite, and existing approaches
(2P and WiLDNet) take advantage of this.

Unfortunately, enforcing the network topology to be bipartite can
be limiting, because it constrains the ways in which networks can
be gradually extended. For example, consider the case when anew
network nodeA is added to the network, andA has line of sight to
nodesB andC. If B andC are already connected to each other,
nodeA can only connect to one of the two (in order to maintain the
bipartite constraint). For node A this implies that a) it cannot have
redundant links, making network connectivity less reliable, and b)
it is served at suboptimal network capacity.

Raman [17] proposes a solution to address this when several non-
overlapping channels are available, by dividing the network into
bipartite subgraphs operating on different channels, and using 2P
on each of these subgraphs.

However, under the constraint of single-channel operation, such
an approach cannot be used. We therefore investigate the following
intuitive ways to adapt the TDMA scheme in which nodes send or
receive on all of their links for use in non-bipartite topologies:



1. FT: Fixed-slot TDMA according to vertex colors. First com-
pute the minimum vertex coloring of the graph. Then nodes
transmit in TDMA slots, according to their color. Colors
are scheduled for transmission in a round-robin fashion, and
therefore each node sends once everyK slots, whereK is the
number of colors. For bipartite graphs (which can be colored
with 2 colors), the behaviour of this algorithm is the equiv-
alent to the that of 2P and WiLDNet. (We will describe a
slightly more efficient version of this approach in section 4).

2. FT-CUT: Fixed-slot TDMA over maxcut. We first compute
the maximal subgraph that is bipartite and contains all the
network nodes — i.e. amaxcutin the original graph. We then
use 2P on the maxcut, keeping other links as backups.

The latter approach features two types of links: some that are
used for the entire time (to either send or receive), and others that
are never used in normal operation. The former uses all the links,
but all of them are only used for part of the time (2/K of the time).
Dynamic slot sizes can work with either approach and we compare
the efficiency of these approaches, with and without adaptive slot
sizes, later in the paper.

3.4 Quantifying the Throughput Gap
The shortcomings described in the previous section point tothe

fact that existing solutions are likely to yield suboptimalthrough-
put. In order to measure how far are these approaches from being
optimal, we investigate ways to compute a link transmissionsched-
ule that optimizes total network throughput. This bound canthen
be used to quantify the inefficiency of practical protocols.

Throughput-Optimal Link Schedule : We borrow from prior
work [11] in the more general context of multi-hop wireless net-
works featuring inter-link interference. In this work, optimal link
scheduling is framed as amax-flow optimization problem, with an
additional constraint that avoids inter-link interference by enforcing
that interfering links never schedule transmissions simultaneously.

Interference in a connectivity graphG can be specified by means
of aconflict graph. The vertices of the conflict graphC correspond
to the directed edgeslij in the original graphG. There is an edge
between verticeslij andlpq in C if the links lij andlpq cannot be
activated (transmitted on) simultaneously.

In the conflict graphC, we know that vertices belonging to a
given independent setin C, which represent links in the original
connectivity graphG, can be scheduled simultaneously. Therefore
an independent set in the conflict graph corresponds to aschedu-
lable setof links in the original graph. To avoid interference, the
link schedule must ensure that, at any time, all the scheduled links
belong to a common schedulable set.

Any link transmission schedule that alternates among schedula-
ble link sets is a feasible one as it does not introduce interference.
Therefore, the optimization problem is to find how much of theto-
tal time can be spent in each of the schedulable sets, such that the
total bandwidth is optimized.

We adapt this generic solution to the specific case of WiLD net-
works. Here, interference is caused when a node (sayj), receives
on one link (lij ) while sending on another (ljk). This is equivalent
to saying that the conflict graph must have an edge between anytwo
links lij andljk of the original graph. Figure 5(a) presents an ex-
ample of a connectivity graph for a WiLD network, and Figure 5(b)
shows its associated conflict graph.

Besides the constraints forobeying link capacitiesandavoiding
interference, several other constraints can be added in order to re-
flect the limitations introduced by practical solutions.

Figure 5: Example of a connectivity graph and its associated
conflict graph

One such set of constraints is related to the routing assumptions;
if no routing constraints are specified, themax-flowsolutions as-
sumes multi-path routing. We therefore investigate how theopti-
mal throughput decreases if we constrain the routing to besingle
path, or if we constrain it to besingle path and fixedto a set of
routes computed beforehand (e.g.,by using a shortest-path algo-
rithm). We consider these scenarios because most practicalrouting
algorithms make these assumptions.

Finally, we also investigate what happens to the maximum
throughput if we constrain the nodes to always transmit simulta-
neously on all of their links. We use this particular constraint for
two reasons: it is assumed by existing approaches such as 2P and
WiLDNet, and it also makes the search for schedulable sets much
easier and tractable for larger network sizes. Due to space con-
straints we omit the details of these LP formulations.

Comparison: Practical vs. Optimal: We use the solutions to these
LP problems to present the potential for improvement over existing
algorithms. We thus compare these solutions against the through-
put achieved by existing fixed-slot approaches (FT and FT-CUT).
We perform our comparison on the following topologies: a) a 20-
node random graph, with an average connectivity degree of 3;b)
a real WiLD topology (14 nodes and 19 links) as used in the Ar-
avind Eye Hospital; c) a realistic WiLD topology constructed using
the method presented by Raman [17]. We assume a uniform link
capacity of 10 Mbps.

To measure saturation throughput (in terms of the maximum
number of flows successfully accommodated by the network), we
generate an amount of traffic exceeding the maximum capacity. We
use CBR flows, with a bandwidth of 500 Kbps. We generate uni-
directional flows between random source and destination pairs.

For the offline algorithms, we solve the linear programs gener-
ating the throughput-optimal solutions using the ILOG CPLEX [1]
optimizer. To evaluate the performance of the online algorithms,
we perform simulations using a modified version of the Java-based
network simulator developed by Jain [12]. Given that the number of
flows accommodated by the network depends on the order in which
we add flows, we generate5 such random flow orderings, and for
each ordering we add the flows one by one until we reach satura-
tion. For each run, we find the point when the maximum number
of flows was successfully served by the network, and we average
among the results obtained in each run. We use this method to com-
pute the throughputs for 5 random topologies for each size, and
present the average of these results.

Figure 6 illustrates our comparison. As expected, we find a very
large gap between the throughput achieved by practical approaches
and the maximum potential throughput. Even with constraints of
fixed routing and simultaneous transmission on all the linksof a
node, the LP solution computed offline outperforms practical so-
lutions by a factor of two. We also see that among the practical
algorithms, FT-CUT outperforms FT over the original graph.This
happens because, for a graph witha chromatic number Klarger
than 2, sending only once everyK ≥ 3 slots is inefficient.
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tional CBR flows for the following algorithms: 1)LP-MP (O):
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Figure 7: Maximum throughput for unidirectional CBR flows
for various protocols with increasing network size. These are
random topologies (avg. deg:3).

We also investigate whether this large gap happens in networks
of other sizes. Figure 7 compares the network throughput delivered
by these algorithms in networks of increasing sizes (# of nodes).
For each network size, we generate5 random topologies with aver-
age connectivity degree of 3. Every measurement point corresponds
to the average throughput of all the topologies of the same size,
each simulated with 5 different random flow orderings as described
above. For networks smaller than 20 nodes we compute the fixed-
path optimal throughput (LP-FP(O)), while for larger sizeswe only
compute the approximation where nodes are constrained to trans-
mit simultaneously on all of their links (LP-FP(N)). We find that,
at small sizese.g.,6 nodes), the difference between practical and
optimal approaches is small, but this difference increasesquickly
as we exceed 10 nodes, and remains high afterwards.

Our findings show that existing practical approaches are ineffi-
cient over a large spectrum of network topologies, which motivates
the development of a new more dynamic MAC layer based on the
insights presented above.

4. JazzyMac DESIGN
This section presents JazzyMac, a novel medium access control

protocol for long-distance wireless networks that addresses the lim-
itations identified in section 3. Specifically, JazzyMac makes the
following key improvements:
Adaptive slots:rather than require fixed-length transmission slots,
JazzyMac allows each link to dynamically adapt the length ofits
transmission slots based on locally observed traffic load. Adaptive
slots lead to more efficient bandwidth allocations and greater flexi-
bility in navigating the tradeoff between throughput and delay.
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Figure 8: Scenario featuring three nodes and three links. The
figure presents the network topology, and illustrates how data is
sent and received on each of the network links. The figure also
shows how nodes transition between TX and RX states, as well
as the distribution of the link tokens between the three nodes.

Allow parallel neighboring-but-independent transmissions: the
protocol is specifically designed to allow neighbors to proceed with
parallel independent transmissions, as exemplified in section 3,
which contributes to increased throughput.
Generalized topologies:scheduling in JazzyMac does not require
that the topology be bipartite, making the protocol applicable to
arbitrary topologies.

JazzyMac achieves the above using simple and fully distributed
algorithms that rely only on readily available local state.This
makes JazzyMac practical for implementation in existing radios
and hardware platforms.

4.1 Protocol Description
We now describe the JazzyMac protocol. Every node A is asso-

ciated with a node-widemode of operation, which can be either
transmit (TX) or receive (RX). Each network linkAB is associated
with a token, TAB , that is at all times in the possession of either
nodeA or B and only the node holding the token can transmit
on the associated link. In addition, each token is associated with a
timeout value, vAB , that controlswhenthe node holding the token
is allowed to transmit over the associated link. Finally, weintroduce
a network-wide parametermax_slot that bounds the maximum
length of any transmission slot.

Given the above protocol state, the basic operation of JazzyMac
is guided by the following four rules:

(1) token exchange rule:When a node (say)B has completed its
transmission over linkAB, it computes a timeout valuevAB that
estimates the time in the future when nodeB will be willing to
receive trafficfromA (we describe howvAB is computed shortly).
NodeB then hands the tuple (TAB, vAB) to nodeA. If node A
receives this token at timet, we say that tokenTAB is valid after
time t + vAB .
(2) mode rule: A nodeB that is in receive mode can transition to
transmit mode only when it holds the token (whether valid or not)



for all its links. Likewise, a node returns to receive mode when it
has released the tokens forall its links.
(3) transmission rule: A nodeA can transmit over linkAB only
when the following two conditions are true: (1) nodeA is in trans-
mit mode and (2) nodeA holds tokenTAB , andTAB is valid.
(Note that, by the mode rule,A being in transmit mode ensures it
hasTAB).
(4) slot rule: A nodeA can transmit on linkAB for no longer than
max_slot time units.

Figure 8 illustrates the operation of JazzyMac for a simple 3node
scenario. Assume that node A initially holds the tokens for links
AB (TAB) andAC (TAC), while node B holds the tokenTBC .
The timeline proceeds as follows.

1. At t = 0, since nodeA has all the tokens, it is in node-wide
TX mode and starts transmitting on both its links.

2. At t = 15, A’s transmission toB ends, and tokenTAB is
passed toB. Note thatA’s transmission toC lasts much
longer (50 time units). Therefore,TAB is passed with a time-
out vAB = 35, the additional time until nodeA finishes its
transmission toC.

3. Also att = 15, nodeB has all its tokens and hence transi-
tions into a node-wide TX mode. However only tokenTBC is
valid, and thereforeB starts transmitting only to nodeC. In
prior MACs, to avoid collisions,B would transmit toC only
when A finishedall its transmissions. With JazzyMac, we
can permit suchneighboring-but-independenttransmissions
without resulting in any collisions.

4. At t = 50, A releases tokenTAC and transitions into node-
wide RX mode.B’s tokenTAB becomes valid and it starts
transmitting over linkAB.

5. At t = 60, C transitions to TX, and so on.

Note that the use of a node-wide mode of operation controlled
by the above rules ensures that JazzyMac respects the fundamental
limitation of inter-link interference in WiLD networks. Specifically,
nodeA never transmits on linkAB while receiving on another link
(say)CAand also never transmits on linkAB while nodeB is itself
transmitting on some linkBC.

The use of token timeoutsvAB allows neighboring nodes to si-
multaneously transmit provided these transmissions are indepen-
dent. For example, in the above scenario, nodes A and B can simul-
taneously transmit between times 15 and 50. This allows JazzyMac
to move beyond the strict alternation imposed by solutions based
on bipartite scheduling. In addition, we show in Section 4.3that
the above rules suffice to ensure that JazzyMac is deadlock and
starvation free.

We now address two additional questions not addressed by the
above protocol description.
(#1) How long does a link transmission last?Themax_slot pa-
rameter sets the upper limit on slot lengths. To select a goodslot
length, JazzyMac selects a slot length based on its locally ob-
served traffic demand. Our implementation uses theper-link outgo-
ing queue lengthas a measure of traffic demand on the link in ques-
tion. LetttAB denote the estimated time to transmit all the packets
queued for transmission over linkAB. The slot length for linkAB
is then selected to be the minimum ofttAB andmax_slot. This
policy allows busy links to transmit for longer, and less used links to
transmit for shorter periods, as demanded by network traffic. The
max_slot bound ensures fairness, in terms of a minimum per-
link bandwidth and packet delay (to be discussed in section 4.3).

Figure 9: Example initial token assignments

(#2) How are timeout valuesvAB calculated?As described above,
when nodeA finishes its transmission on linkAB, it must calcu-
late a timeout periodvAB that estimates the time when nodeA exits
transmit state and is ready to receive traffic fromB. The difficulty
is that in order to estimatevAB , nodeA must estimate the timein
the futurewhen it will be done transmitting onall its links. We im-
plement this by estimating a remaining-transmission time for each
link individually and settingvAB to the maximum of these esti-
mates. For the links that are done transmitting, the estimated pend-
ing transmission time is zero; for links that are already transmitting,
the overall slot time is already known (calculated using #1 above)
and hence the remaining transmission time is known. For links over
which transmission hasn’t yet begun (e.g.,, if the token for the link
is still inactive), we estimate the remaining transmissiontime as
the sum of the time left to the activation of the link token andthe
time required to transmit packets currently buffered at thelink’s
outgoing queue. After estimating all the per-link transmissions end
times, the latest of these times is selected asvAB , and subsequently
advertised to peers when exchanging tokens. Once the end of the
node-wide TX has been established, all links will make sure not to
transmit past this time.

The above completes the description of the basic JazzyMac pro-
tocol operation. In addition, we must specifya) how is the protocol
bootstrapped (in terms of the initial token assignment), and b) how
does JazzyMac recover from token losses and node failures. We
describe our bootstrapping protocol in the following section, and
discuss recovery mechanisms in Section 4.4.

4.2 Protocol Bootstrapping
The protocol liveness and efficiency depend on the initial assign-

ment of link tokens. While the long-term functioning of our pro-
tocol is distributed and requires only local information, the initial
token assignment will be computed globally during the network
planning phase (in future work we plan to investigate distributed
coloring in dynamically-changing networks).

In order to illustrate the effect of different initial assignments, let
us examine different possibilities for the 5-node cycle presented in
figure 9. Assigning a link token is similar to establishing aninitial
direction for the given link. In this example, we make the simpli-
fying assumption that all transmission slots have the same length.
Some possible initial states are:

• If we decide to start by giving one token to each node, the
protocol will be in a deadlock situation, since none of the
nodes can proceed with their transmissions (figure 9(a)).

• If we begin in the state in which only one node (nodeA)
has all its tokens (figure 9(b)), then nodeA sends first, fol-
lowed byB, then byC, thenD, thenE and finallyA again,
i.e.,one node at a time. Thus, each link transmits for 20% of
the time in each direction, and is idle for 60% of the time
(please be reminded that our example assumes equal-sized
transmit slots).

• If we begin with the initial assignment presented in fig-
ure 9(c), where at the beginning both nodesA andC can im-
mediately (and simultaneously) start transmitting, then nodes



A andC go together, followed by the pairB andE, then by
A andD, thenC andE, and so on. The sets of nodes that
send at one time keep changing, with 2 nodes always trans-
mitting simultaneously. In this scenario (which is the opti-
mum one for fixed slots), links send for 40% of the time in
each direction, and are idle for 20% of the time.

Thus we see that the steady-state performance of JazzyMac is
determined by the initial protocol state. We therefore aim to assign
an initial state that allows JazzyMac to ensure and maintainthe
following correctness and performance-related properties:

• a) deadlock-free operation

• b) starvation-free operation (every node gets the opportunity
to send),

• c) a lower bound on the fraction of time in which a link can
send in each direction (provided that the link requires this
much time for transmission), and

• d) an upper bound on the per-link packet delay time.

We therefore propose the following bootstrapping algorithm:

1. Color the vertices of the network graph with the minimum
number of colorsK such that no two adjacent vertices have
the same color.

2. The tokens are assigned to the link end that has the lowest
color (the two ends must be colored differently).

4.3 JazzyMac Properties
In the following we prove that JazzyMac is deadlock-free (as-

suming the bootstrapping strategy introduced earlier), and that it
observes a set of performance guarantees in terms oflink utiliza-
tion andper-hop maximum packet delay. In the interest of space,
we only give the formal proof for the simpler case assuming fixed
slot sizes, and provide the intuition for why the same properties
hold for the general case of dynamic slot sizes.

Fixed slot size case: In this simplified case, time can be regarded
as a succession of equally-sized time slots. For our proof, we intro-
duce the following abstraction that describes the protocolin a man-
ner equivalent to our token-based description. Imagine that each
node has a non-decreasing sequence number. LetSi(A) be the se-
quence number of nodeA in slot i, and letTi ⊆ G be the set
of nodes transmitting during sloti. In the initial slot, the sequence
number of every node is equal to the vertex color used to bootstrap
the algorithm:S0(A) = color(A). After nodes transmitting in slot
i finish sending, they recompute the value of their sequence num-
ber to be one larger than the maximum sequence number of their
neighbors:

Si+1(A) = 1 + max
X∈neighbors(A)

Si(X),∀A ∈ Ti

while the non-transmitting nodesB /∈ Ti keep their sequence num-
bers unchanged:Si+1(B) = Si(B).

Using these sequence numbers, the condition to be fulfilled by
nodeA in order forA to belong to the setTi (meaning thatA has
the tokens for all its links) can be expressed as:

A ∈ Ti ⇐⇒ Si(A) < Si(N), ∀N ∈ neighbors(A) (2)

We continue by stating the following property.

PROPERTY 1. During any time slot, the difference in sequence
numbers between any two network nodes remains strictly smaller
than the number of colors used for graph coloring:

max
A∈G

Si(A) − min
B∈G

Si(B) ≤ colors(G) − 1 (3)

PROOF. By induction. We use the initial assignment of sequence
numbers as the base case, and for this base case Property 1 holds,
because all nodes have sequence numbers between1 and the max-
imum number of colors. For our inductive step, we assume thatthe
property holds in slotn, and we prove it for slotn + 1. Since in
slotn there is at least one node that has a sequence number smaller
than the ones of its neighbors,Tn 6= {}. Also, the setM of nodes
that have theminimumsequence number in the entire network is
a subset ofTn. During slotn, every nodeA ∈ Tn transmits and
then sets its sequence number to1+maxneighbors(A) Sn(A). Since
M ⊂ Tn, and all the sequence numbers of nodesA ∈ Tn increase
by at least one, it means that in slotn + 1:

min
B∈G

Sn+1(B) ≥ min
B∈G

Sn(B) + 1 (4)

On the other hand, maxN∈neighbors(A) Sn(N) ≤
maxP∈G Sn(P ), and therefore the maximum sequence num-
ber in the network will not increase by more than one:

max
B∈G

Sn+1(B) ≤ max
B∈G

Sn(B) + 1 (5)

From (3,4,5) it follows that:

max
A∈G

Sn+1(A) − min
B∈G

Sn+1(B) ≤ colors(G) − 1 (6)

which concludes our proof.

PROPERTY 2. There protocol does not result in any deadlock
or node starvation.

PROOF. Knowing that property (1) holds, it becomes obvious
to show that there is no starvation. This follows from the fact that,
at every slot, the minimum sequence number in the network in-
creases by at least one (as previously shown) and therefore in any
K consecutive slots, the minimum sequence number increases with
at leastK. But since, at any time, all the nodes have sequence num-
bers that differ by at mostK, we can conclude that every node
must transmit at least once everyK slots. Thereforenone of the
nodes will starve(this obviously implies that there is also nodead-
lock).

The proof above directly entails the following properties:

PROPERTY 3. Every node can choose to send on each of its
links for at least1/K of the link capacity.

PROPERTY 4. The maximum delay between two consecutive
opportunities to send on any link is smaller than1/K

These two properties establish performance guarantees, the former
introducing a lower bound on link utilization, and the latter intro-
ducing an upper bound on per-link delay.

Dynamic slot sizes: The properties above also hold for the general
JazzyMac protocol, and we provide a brief intuition for it here. The
first observation we make is that a node using variable slots goes
through the same sequence of node-wide TX and RX states as when
using fixed slots. Furthermore, the token exchanges performed by
a node during a particular TX or RX state is also same as in the
fixed slot case. The difference between the two scenarios is given
by the fact that, with variable slots, nodes have the option to give
up tokensearlier than in the fixed case. These observations can be



used to show that a particular token exchange in the variableslot
case can only happen earlier than the same exchange in the fixed
slot case. Therefore, at any time from the beginning of operation,
each link would have had at least as many opportunities to transmit
as in the fixed slot size case. This means that the protocol does not
suffer from starvation, and obeys similar bandwidth bounds.

4.4 Dealing with Loss
Even though JazzyMac eliminates interference at co-located ra-

dios, other sources of packet loss such asexternal interferencecan
still cause packet loss in long distance links [21, 5]. This can lead
to loss of link tokens, affecting the functioning of our protocol.

Consequently, any JazzyMac implementation should take pre-
cautionary measures in order to minimize the probability oflosing
tokens. There are several ways to make the protocol more resilient
to such occurrences, including piggybacking tokens on several data
packets, and sending multiple copies of the token and validation in
small packets.

However, in the unlikely event that the loss still occurs, our
protocol must recover properly. This is a delicate issue: simply
assuming token receival after waiting for a certaintimeout pe-
riod is not adequate, because it breaks the inter-node ordering
established during bootstrapping – possibly leading to starvation
or low-performance steady-state operation. For example, consider
the chain A-B-C-D, and assume the loss of tokenTAB . This will
promptB to wait, which in turn would promptC to wait for token
TBC . Now if nodeC assumes to have received tokenTBC after a
timeout, we arrive into a situation where both nodesB andC be-
lieve that they hold tokenTBC . Moreover, if nodeC goes ahead to
transmit to its neighbors, the ordering between nodes is broken. In
order to maintain the original inter-node ordering, we mustmake
sure that the lost tokens are recovered, while the rest of thetoken
exchanges remain unaffected.

We propose a solution that involves adding a sequence number
SAB to each tokenTAB – set to 0 during bootstrapping. At every
valid exchange ofTAB, SAB is incremented. The solution works
as follows: If a tokenTAB is lost, the recipient (B) will wait for
it, which will prompt other nodes, includingA, to wait as well.
After a timeoutgiven by the maximum time between successive
link transmissions (K × max_slot), every node will resend the
tokens they have sent last. Duplicate tokens (that have previously
been received) will be ignored, and the lost token (resent byA) will
be properly recovered.

A problem with this approach is that simultaneous token retrans-
missions by several hosts can interfere with each other or other
packets. To minimize the probability of such occurrences, the to-
kens can be sent in small packets, at random intervals after the
timeout and retransmitted periodically until successful.

The same sequence numbers can be used to detect a link (or
node) that is permanently down: if a nodeA does not receive any
retransmitted tokens on a quiescent linkAB for a long time, the
link is markeddown. From that moment on,A will not wait for to-
kens on the linkAB. Instead, it will transmit a copy of the token
during everyTX state, and assume its instantaneous return. In the
event that a node dies, all its links will be individually marked as
being down.

When a nodeB re-joins the network after a period of inactivity, it
first listens on all of its links (to verify that they are stillactive), and
then advertises its presence by sending specialjoin requestpackets
on all its active links. These requests are repeated periodically, until
a response is received. Upon receiving a join request, the neighbor-
ing nodes will mark the respective link active again, and respond by
sending the link token toB. Upon receiving all the link tokens,B

will resume normal operation. As in the case of token retransmis-
sion, join requests can create an acceptable amount of interference.

5. EVALUATION
In this section we evaluate the performance of JazzyMac overa

range of topology types and sizes, and various patterns of traffic.
Our findings show that:
• JazzyMac greatly improves the maximum network throughput
achievable by existing approaches: 15–100% in typical topologies,
depending on traffic.
• The throughput improvements are consistent across many
topologies and traffic patterns. Improvements are highest in asym-
metric traffic patterns, when dynamically sized slots can offer much
better bandwidth allocation compared to fixed-slot approaches.
• Our protocol significantly reduces the gap between network
throughput achieved by practical approaches and the optimal net-
work throughput computed offline, and assuming idealized trans-
mission slots (no switching overhead).
• Dynamic slot sizing improves the delay-throughput tradeoff,
offering increased maximum throughput when required, and de-
creased packet delay at average network utilizations.
• Having the ability to operate over non-bipartite topology is im-
portant, allowing throughput increases as large as 80% withasym-
metric traffic distributions.

5.1 Methodology
In our experiments we compare the performance of fixed TDMA

approaches with JazzyMac when run on both the original network
connectivity graph (FT and JZ) and the bipartite subgraph (maxcut)
(FT-CUT and JZ-CUT):

Fixed Slots Adaptive Slots
Original Fixed TDMA JazzyMac
Graph (FT) (JZ)
Maxcut Fixed TDMA JazzyMac

on cut (FT-CUT) on cut (JZ-CUT)

We run our experiments using a version of the Java-based net-
work simulator developed by Jain [12], modified with MAC-level
support for our protocols. We consider a range of network topolo-
gies and sizes, and various traffic demand patterns. We assume a
link capacity of 10 Mbps. The link propagation delay is not consid-
ered explicitly, but is accounted for in the slot switch time(guard
time) tswitch, which we conservatively set to1ms in the default
case. Unless otherwise specified, we use a slot size (or maximum
slot size for adaptive algorithms) of20ms. We assume no packet or
token losses, and no node or link failures. For the optimal LPfor-
mulations we use the experimental setup described in Section 3.4.

Topologies: We consider several types of topologies: a) random
topologies, with varying degrees of connectivity and of vary-
ing sizes; b) an actual real-world topology, derived from the one
used in the Aravind Eye Hospital in India [23]; c) typical mesh
WiFi topologies, using the construction method introducedby Ra-
man [17], which we denote as theRamantopology henceforth.

Traffic : We assume traffic consisting of many CBR flows, 500
Kbps each. We choose CBR flows because this traffic is representa-
tive of applications supported today in rural wireless deployments:
VoIP, telemedicine and streaming of educational content.

We consider the following patterns of traffic demand, rang-
ing from very asymmetric to very symmetric: a) one source
to many randomly distributed destinations (single-source, many
sinks); b) unidirectional CBR flows, with randomly chosen source-
destination pairs (unidirectional); c) pairs of CBR flows in opposite
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Figure 10: Number of good flows as we addunidirectional CBR
flows on a 30-node random graph (avg. deg:3)
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Figure 11: Average delay of good flows as we addunidirectional
CBR flows on a 30-node random graph (avg. deg:3)

directions (bidirectional), with many random source-destination
pairs. We leave the evaluation of other types of traffic (e.g.,TCP)
for future work.

Performance metrics: We measure performance in terms of max-
imum network throughput and average delay.

Method: We generate several networks (typically 5) for each topol-
ogy type and network size. Next, we generate several orderedsets
(typically 5) of CBR flows, using the traffic patterns described
above. We then run a simulation using each of these flow sets. Dur-
ing a simulation run, we start with an unused network, and incre-
mentally add CBR flows from the ordered flow set, until the net-
work reaches saturation.

5.2 Performance in Random Topologies
In order to understand the behaviour of various algorithms with

increasing network load, we start our evaluation by lookingat one
graph, a 30-node random graph with an average degree of 3, and
we use randomly generatedunidirectionalCBR traffic.

We perform the experiment by adding one CBR flow at a time;
we then measure how many of these flows can be accommodated by
the network. We consider a flow to be accommodated successfully
(i.e., a “good” flow) if it receives 90% of its packets and its per-
packet delay is not continuously increasing.

As we can see from our results, plotted in Figure 10, initially all
flows are accommodated, but as more flows are added, some links
become saturated, and the corresponding flows on these saturated
links suffer. For each experiment, we emphasize two metrics: a)
max point, which is the maximum number of good flows supported
at any time during the experiment (we use this as a proxy for maxi-
mum throughput), and b)divergence point, which is the maximum
number of good flows that could be successively added from thebe-
ginning without having to drop any flow. We highlight this second
metric because in practice, flows arrive in random order and,once
accepted, they cannot be dropped. These two metrics are illustrated
in Figure 10. For this particular network, JazzyMac accommodates
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Figure 13: Divergence throughput orunidirectional CBR flows
with increasing network size. For random topologies (avg.
deg:3)

46% more flows than FT-CUT and 137% more than FT. JazzyMac
is also 32% better at thedivergence pointthan FT-CUT and over
200% better than FT.

Figure 11 shows what happens to the average per-flow delay
as we increase the volume of traffic in the network. As expected,
JazzyMac operates at lower slot sizes, and therefore sees consis-
tently smaller delays than FT and FT-CUT, which use a fixed slot
size of 20ms. At low utilizations, these delay improvements are
between 2–4x over FT-CUT and between 4–8x over FT.

Next we investigate whether JazzyMac’s improvements are con-
sistent over a range of network sizes. We start by revisitingthe
experiment discussed in Section 3, where we measure the gap in
maximum throughput between practical and optimal algorithms.
For this experiment we span several network sizes, and compute
average results over5 random topologies for each network size,
and 5 sets of unidirectional CBR traffic demands for each topology.
Our results, presented in Figure 12 confirm that JazzyMac outper-
forms fixed slot approaches in all cases, and that it reduces the gap
to optimal throughput.

Nonetheless, this gap remains large. Upon closer inspection, we
find this to be the case because the solution of the LP chooses the
best set of flows (that maximizes total throughput) from the large
pool of input flows. In contrast, JazzyMac and the other practical
algorithms are constrained to accept flows in the order they arrive
(which is non-optimal), making our comparison unfair. To com-
pensate for this effect, we compute the equivalent of thedivergence
point for the LP solution, using the following iterative approach:
we start with a small set of flows, and incrementally add flows to
it. At each step, we run the LP solver to see if the current flow set
is feasible, meaning that the LP solver can find a link transmission
schedule that accomodates all of the flows in the set. If this is the
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Figure 14: Throughput for various topologies, random CBR
flows from one source to all the nodes.

case, we add more flows, otherwise we stop, and use the network
throughput achieved using the largestfeasibleflow set as our di-
vergence point. We then compare thedivergence throughputof the
optimal approaches to thedivergence throughputof JazzyMac and
other practical algorithms, and plot the results in Figure 13. We can
see that, after eliminating the unfairness in our comparison, Jazzy-
Mac effectively halves the gap to optimal throughput.

5.3 Effect of Traffic and Topology
We now examine the performance of JazzyMac under various

traffic patterns and various topology types.

One source, many sinks: In our first experiment we use traffic
from a single source to many sinks, which is representative of the
case when a when a video server streams content to many desti-
nations. Figure 14 plots the (a)maximum bandwidthand (b) the
number of flow additions until the first network flow fails (i.e., the
divergence point), achieved by our algorithms in the three types
of topologies described previously (random, Aravind, and Raman).
The random and Raman topologies have 20 nodes, while the Ar-
avind topology has 14 nodes. For the random and Raman cases, we
generate 5 topologies and for each topology we run 5 sets of CBR
flows and average over all of them.

We find that for this asymmetric traffic distribution, JazzyMac
achieves dramatically higher throughput across all topologies, with
improvements as large as 100% over FT-CUT, and even larger over
FT. We also note that, while FT performs better over the maxcut
(i.e., FT-CUT > FT), JazzyMac performs much better over the
original graph: it is able to make productive use of the extralinks.

Many sources and sinks: We perform the same comparisons for
the other two traffic patterns as well: random unidirectional (Fig-
ure 15) and bidirectional (Figure 16) flows. In the first case,the im-
provements over FT-CUT are between 25–50% for themax point,
and 40–60% for thedivergence point. In the second case, the
throughput improvements are much lower, 15–45% for themax
point and 20–50% for thedivergence point.

Overall, we see that JazzyMac consistently outperforms theother
protocols across all the topologies and traffic types. We also find
that the relative throughput improvements given by JazzyMac are
larger for more asymmetric traffic. This is to be expected, given that
variable slot sizes are most useful in asymmetric traffic conditions,
where traffic demands are very different in different directions on
the same link, but also across different links. For symmetric traffic,
which naturally requires similar slot sizes, JazzyMac’s throughput
improvements are more modest.

Another important observation can be derived from the relative
ordering (in terms of achieved throughput) of the four measured
protocols: JZ> JZ-CUT≈ FT-CUT> FT, which holds true across
all our topologies and traffic patterns. On one hand, this finding
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Figure 15: Throughput with unidirectional random CBR flows.
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Figure 17: Maximum throughput vs. average delay.

confirms that, for fixed slot approaches, it is more opportuneto op-
erate on the maximum bipartite subgraph of a given network topol-
ogy (as done by 2P and WiLDNet) rather than on the original topol-
ogy (since FT-CUT> FT). On the other hand, if dynamic slots are
used, it becomes more profitable to operate on the original non-
bipartite topology (JZ> JZ-CUT). This confirms the importance
of having an approach that takes advantage of all the networklinks,
increasing network capacity (reflected in the increased throughput
achieved by JZ), but also improving fault-tolerance.

5.4 Bandwidth vs. Delay Tradeoff
We also look at how JazzyMac enables a better combination of

average delayandmaximum throughputthan existing fixed-slot ap-
proaches. We perform our experiments using a random topology of
20 nodes with an average connectivity degree of 3, and using ran-
dom unidirectional CBR traffic. To change the tradeoff between
throughput and delay, we vary thefixedslot sizes of FT-CUT and
FT uniformly, between 3ms and 12ms, in 5 steps. For JazzyMac,
we vary the value of themaximumslot size in the same range. For
all of the algorithms, we assume a slot switching overhead of1ms.

We then measure themaximum network throughput, and the
average end-to-end delayexperienced at half of the saturation
throughput of the network. We plot the tradeoff between maximum
throughput and average delay in Figure 17.

We fist note that setting JazzyMac’s upper bound on the slot size
to the largest value (12ms) is clearly the best setting in terms of



throughput, and as good as any other setting in terms of delay. This
result confirms that JazzyMac’s adaptation mechanism is effective
in dynamically adapting slot size to achieve both high throughput
when needed and low delay at average utilizations.

We also find that, as suggested by previous experiments, Jazzy-
Mac outperforms FT-CUT and FT by a large margin, in terms of
both throughput and delay. Among the fixed-slot approaches FT-
CUT performs best, and increasing its fixed slot size beyond 6ms
has diminishing bandwidth benefits.

6. OTHER RELATED WORK
WiLD Networks:The use of 802.11 has grown beyond its originally
intended purpose of indoor wireless LANs to multi-hop outdoor
meshes, both short range [3] and long range [16, 19]. It is a well
known fact that CSMA/CA is ill-suited for multi-hop mesh net-
work settings (short and long-range) [9, 13, 21]. As a result, several
TDMA-based protocols have been proposed for mesh networks.
Maximizing throughput in multihop wireless networks:Djukic and
Valaee [7] propose min-max heuristics to provide offline algorithms
to minimize delay when link bandwidthsare known in advance.
Wang et al. [25] provide centralized and distributed algorithms to
maximize throughput by taking into account interfering links. In
comparison, our new protocol needs no future knowledge of traffic,
is fully distributed, provides flexible delay-bandwidth guarantees,
and can dynamically adjust to varying traffic demands.
MAC implementations using 802.11 radios:Several MAC imple-
mentations using 802.11 radios have been proposed. Most related
to ours are 2P [19] and WiLDNet [16] (covered earlier). Overlay-
MAC [20] provides a deployable approach towards implementing a
TDMA-style MAC on top of 802.11 MAC hardware. Softmac [15]
is a platform that can be used to build experimental MAC proto-
cols. MultiMAC [8] extends this approach so that multiple MAC
layers can co-exist and any one can be chosen on a per-packet ba-
sis. These approaches are complementary to our work as we can
build JazzyMac over these platforms.

7. CONCLUSION
WiLD networks provide network access, VoIP and telemedicine

services to many thousands of users in rural areas around theworld.
These networks use standard WiFi radios and TDMA-based MACs
to achieve good throughput over multi-hop long distance networks.
Although these approaches provide real gains over CSMA-based
solutions, they are limited by their use of fixed-sized TDMA trans-
mission slots, and constrained by interference to operate only over
bipartite network topologies. In this work we have identified oppor-
tunities, based primarily on dynamic slot sizing accordingto traffic
demand, to further improve throughput, to reduce latency, and to
enable operation on general topologies.

We therefore present JazzyMac, a fully distributed, practical
MAC layer that uses local traffic information to adapt link trans-
mission slot sizes dynamically. JazzyMac uses dynamic slotsizing
to negotiate the delay-throughput tradeoff in WiLD networks, and
exploits asymmetric traffic, time varying traffic, and non-bipartite
topologies to achieve a much higher throughput than existing
TDMA-based approaches. Our protocol consistently outperforms
existing WiLD MAC protocols in terms of throughput and average
latency, and can operate unconstrained in any network topology.
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